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A hybridized scheme for the numerical solution of transient electromagnetic field prob-
lems is presented. The scheme combines the Finite Integration Technique (FIT) and the
Finite Volume Method (FVM) in order to profit from the computational efficiency of the
FIT while taking advantage of the superior dispersive properties of the FVM. The scheme
is based on the longitudinal–transverse (LT) splitting of the discrete curl operator. The
FIT is employed for discretizing the two-dimensional subproblem while the one-dimen-
sional problem is discretized according to the FVM. The scheme offers benefits for the sim-
ulation of multiscale setups, where the size of the computational domain along one
preferred direction is electrically much larger than along the others. In such situations,
the accumulation of dispersion errors within hundreds of thousands of time steps usually
deteriorates the solution accuracy. The hybrid scheme is applied in combination with
adaptive mesh refinement, yielding an efficient scheme for multiscale applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The development of a hybrid numerical method is motivated from the idea of combining the strengths of different exist-
ing methods. One appealing feature of the Finite Integration Technique (FIT) is the preservation of the physical properties of
Maxwell’s equations in the discrete space, e.g. energy conservation [1,2]. The simplicity of the FIT leads to a computationally
inexpensive algorithm, requiring a minimum of computer memory and computational time. Finite Volume Methods (FVM),
on the other hand, are known for their low numerical dispersion [3]. They are traditionally applied to problems from fluid
dynamics, where the accurate simulation of shocks and turbulences critically depends on small dispersion errors. However,
the FVM is computationally more expensive than the FIT. The main idea of a hybrid Finite Integration–Finite Volume Scheme
is, hence, to combine the computational efficiency of the FIT with the FVM such that improved dispersion properties emerge
along one direction in space. This hybrid scheme offers benefits for the simulation of wave propagation in all applications
exhibiting a preferred direction. Such applications frequently occur, e.g. when simulating waveguides, strip lines, or optical
fibers. In addition, the simulation of linear particle accelerators forms a class of multi-physics problems, suitable for the
application of the hybrid scheme.

The superior dispersive behavior of the FVM compared to the FIT is illustrated in a simple example. The propagation of a
trapezoidal wave packet in the one-dimensional space is simulated using a low spatial resolution. The initial state of the
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Fig. 16. Plots of the amplitude error (left) and normalized angular frequency error (right) of the Godunov, Lax-Wendroff and Fromm schemes. The plot

ranges are chosen identically for all methods. While Godunov’s method exposes large amplitude errors, they are small for the Lax-Wendroff and Frommmethods. Godunov’s as well as Fromm’s method show no phase error for the CFL numbers  -0 and 6 5 (again curves for
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49 instead of
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5 are

shown in the graph). Overall, Fromm’s method performs best.

4092 S. Schnepp et al. / Journal of Computational Physics 229 (2010) 4075–4096
method. The pattern does not show the fourfold symmetry anymore. Nevertheless, dispersion effects emerge along both
axes. For the result shown in the lower right graph the FI–FV scheme was applied, also employing a time step of
0:75Dt1D

max. Also in this case, dispersion effects occur along both axes, however, they are much less pronounced along the
z-axis. In both cases the z-direction was treated as the long direction for the one-dimensional problem. Thus, the FI–FV
scheme offers advantages for many real-world problems, where equidistant grids are not applicable. Furthermore, the FI–
FV scheme uses about one third less CPU time than the LT-FIT.

Our motivation for developing a scheme with improved dispersion properties along one coordinate was its integration
into an existing code, which utilizes time-adaptive mesh refinement. We reported on this development, e.g. in [16,17]. This
code has been applied for the simulation of charged particle dynamics in linear particle accelerators. The application of adap-
tive mesh refinement naturally eliminates the possibility of applying the magic time step in all cells.

In the second example, the FI–FV scheme is applied to the simulation of a bunch of electrons in a rectangular pipe. The
electrons travel at the speed of light. Due to the relativistic contraction, the spectrum of the excited electromagnetic fields
m
¼0







Fig. 20. Plots of the absolute of the electric field along the z-axis of Fig. 19(a)–(c). The bottom graph shows an enlargement of the boxed area in the top
graph. The FI–FV result exhibits barely any non-physical oscillatory behavior, which emerges for the other methods due to dispersion errors.
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along the z-axis is plotted. The bottom graph shows an enlarged view of the framed area of the top graph. High-frequency
oscillations are absent in the FI–FV result.

For simulations involving grid adaptation, the dispersive and dissipative behavior of the discrete solution changes accord-
ing to the local resolution. The value of b depends locally on the grid step size and corresponds to a certain dispersion and
dissipation error according to Figs. 13–16. In order to perform an adaptation of the grid, grid voltages have to split and
merged. Due to their definition as integral state variables, this can be done without any error. The grid adaptation does,
therefore not additionally affect the propagation behavior.

8. Conclusions

We introduced a hybrid Finite Integration–Finite Volume (FI–FV) Scheme with improved dispersion properties along one
coordinate. It is well-suited to the simulation of problems exhibiting a preferred direction, e.g. problems comprising large
aspect ratios along the different coordinate axes. The scheme is based on a splitting of the discrete curl operator into a
two-dimensional and a one-dimensional operator. The FIT is applied to the former, the FVM to the latter. This yields a hybrid
scheme combining the computational efficiency of the FIT with the superior dispersion properties of the FVM. We presented
a short review of the FIT and the FVM and summarized their semi-discrete dispersion and dissipation properties. For the
FVM, the central, Godunov, Lax-Wendroff, and Fromm flux were considered. We established asymptotic orders of the disper-
sion and dissipation errors of all considered methods. Subsequently, suitable time integration methods for the semi-discrete
equations were presented. We highlighted the relation of the distribution of eigenvalues of the system matrix and the iter-
ation matrix. In this context, we showed that the combination of the upwind flux formulation of the FVM and the leap-frog
scheme is always unstable regardless of the chosen time step. Additionally, we showed that the Godunov splitting cannot be
applied with the magic time step due to a violation of the stability condition. We, thus, applied the Strang split method. We
elaborated on the coupling of the FIT and FVM degrees of freedom and presented a matrix representation of the three-dimen-
sional scheme. The novel scheme was applied to two examples, which confirmed its superior dispersion properties along the
preferred direction.
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