Journal of Computational Physics 229 (2010) 4075-4096

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A hybrid Finite Integration-Finite Volume Scheme

S. Schnepp **!, E. Gjonaj®, T. Weiland

2 Graduate School of Computational Engineering, Technische Universitdt Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany
Y Institut fiir Theorie Elektromagnetischer Felder, TEMF, Technische Universitit Darmstadt, Schlofgartenstr. 8, 64289 Darmstadt, Germany

ARTICLE INFO

ABSTRACT

Article history:
Received 9 November 2009

Received in revised form 7 January 2010

Accepted 30 January 2010
Available online 12 February 2010

MSC:
65Z05
65M60

Keywords:

Hybrid numerical methods
Finite Integration Technique
Finite Volume Method

A hybridized scheme for the numerical solution of transient electromagnetic field prob-
lems is presented. The scheme combines the Finite Integration Technique (FIT) and the
Finite Volume Method (FVM) in order to profit from the computational efficiency of the
FIT while taking advantage of the superior dispersive properties of the FVM. The scheme
is based on the longitudinal-transverse (LT) splitting of the discrete curl operator. The
FIT is employed for discretizing the two-dimensional subproblem while the one-dimen-
sional problem is discretized according to the FVM. The scheme offers benefits for the sim-
ulation of multiscale setups, where the size of the computational domain along one
preferred direction is electrically much larger than along the others. In such situations,
the accumulation of dispersion errors within hundreds of thousands of time steps usually
deteriorates the solution accuracy. The hybrid scheme is applied in combination with
adaptive mesh refinement, yielding an efficient scheme for multiscale applications.

© 2010 Elsevier Inc. All rights reserved.

Split operator technique
Adaptive mesh refinement

1. Introduction

The development of a hybrid numerical method is motivated from the idea of combining the strengths of different exist-
ing methods. One appealing feature of the Finite Integration Technique (FIT) is the preservation of the physical properties of
Maxwell’s equations in the discrete space, e.g. energy conservation [1,2]. The simplicity of the FIT leads to a computationally
inexpensive algorithm, requiring a minimum of computer memory and computational time. Finite Volume Methods (FVM),
on the other hand, are known for their low numerical dispersion [3]. They are traditionally applied to problems from fluid
dynamics, where the accurate simulation of shocks and turbulences critically depends on small dispersion errors. However,
the FVM is computationally more expensive than the FIT. The main idea of a hybrid Finite Integration-Finite Volume Scheme
is, hence, to combine the computational efficiency of the FIT with the FVM such that improved dispersion properties emerge
along one direction in space. This hybrid scheme offers benefits for the simulation of wave propagation in all applications
exhibiting a preferred direction. Such applications frequently occur, e.g. when simulating waveguides, strip lines, or optical
fibers. In addition, the simulation of linear particle accelerators forms a class of multi-physics problems, suitable for the
application of the hybrid scheme.

The superior dispersive behavior of the FVM compared to the FIT is illustrated in a simple example. The propagation of a
trapezoidal wave packet in the one-dimensional space is simulated using a low spatial resolution. The initial state of the
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Fig. 1. Simulation of a rectangular wave packet with the FIT and the FVM. The initial field distribution is imposed on a very coarse grid (top). The length of
the wave packet covers six cells and propagates in positive z-direction. The simulations employ identical grid spacings. The middle (FVM) and bottom (FIT)
plots show the final distribution of the electric field after 160 time steps. The superior numerical dispersion behavior of the FVM compared to the FIT is
visible.

packet is plotted in Fig. 1 (top). The orientations of the electric and magnetic field are chosen such that the wave vector k
points in the positive z-direction. For the simulation, the FIT and the FVM using the same spatial grid resolution are applied.
In the FVM case, the Fromm approach is applied (see Section 3). The results are illustrated in the middle (FVM) and bottom
graph (FIT) of Fig. 1. The better dispersion properties make FV methods an appropriate choice for handling high-frequency
fields in electrically long structures.

The remainder of this article is organized as follows: the semi-discrete formulation of the Finite Integration Technique
and the Finite Volume Method are reviewed in Sections 2 and 3. For the FIT the discretization procedure in the three-dimen-
sional space is described. Since the FVM is applied along one space dimension only, its review is limited to the one-dimen-
sional case. The numerical fluxes considered are the Godunov, Lax-Wendroff, and Fromm flux, as well as the central flux. In
Section 4, a von Neumann analysis is carried out for all semi-discrete formulations in order to derive their dispersion and
dissipation properties. The hybridization of the two methods is described in detail in Section 5, followed by the introduction
of the longitudinal-transverse split operator technique in Section 6. After discretizing the time variable, the dispersion and
dissipation properties of the fully discretized method are investigated. This is followed by some illustrative examples and
conclusions. Note that throughout the article linear, isotropic, lossless and non-polarized media are considered.

2. Semi-discrete formulation of the Finite Integration Technique

The Finite Integration Technique makes use of a pair of dual orthogonal grids &G, Gp for the spatial discretization of
Maxwell’s equations [4]. Throughout this article regular Cartesian grids are considered. The number of grid points along
the axes are denoted by Ny, N, and N,. The sets of edges and faces of the primary and secondary grid are denoted by
E, A and E, A, respectively. The degrees of freedom (DoF) are the electric and magnetic integral state variables e and h,
which are defined as

)

:1/4/1? ds, c2E, a1p

c

E:%/H ds, ¢2F 52
[

They are named the electric and magnetic grid voltages. The electric field is denoted by E and the magnetic field by H. As a
convention, we use capital letters for the space-continuous field quantities and lower case letters for space-discrete
quantities.

Evaluating Faraday’s and Ampére 's laws

EoF,tb dSv /Qéaﬁtp dA, A2A, 33b
0A A at

_Het tb dsva j[ <% D7, tb p J 7, tb) di, A2A, 34p
A

0A
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for one face of a primary grid cell and one face of a dual grid cell yields their local semi-discrete FIT formulations

4 = d ~
> edp — b, 85p
, de
Jjval
4 — d - -
L, d )
§ hdjb Ya a dpj, a6b

ol
where j numbers the four edges of the face. The orientation of the involved voltages edjb, hdjp with respect to the orientation
of the loop integral in (3) and (4) determines the summation signs appearing in (5) and (6). The electric and magnetic inte-

gral fluxes d and b are no additional degrees of freedom. They are defined as

:1/4/~D dA, A2A, 87p
A

Q)

B:%/E dA, A2A, 48b
A

and relate to the respective voltage according to

dv:M.e, bviM,h, 50p

where M. and M, are suitably averaged discrete material parameters [5] and €, u denote the permittivity and permeability.
The integral state variable of the current flux j is defined as
j:%/JdZ\, A2A. 310p
A ~
Convective currents, e.g. arising from the motion of free charged particles are included in j.
Gathering the electric and magnetic voltages in the vectors of DoF, e and h, allows for stating the discrete Faraday’s and
Ampére ’s law for the complete computational domain in semi-discrete form

—~ d -
Ce% M,4h, 811b
fB%MF%Eb}. 512b

The matrices M. ¥ diagdM.p and M,, ¥ diagdM,,p contain the cell-wise defined material parameters. The FIT representations
of the curl operator C and C resemble the structure of the continuous curl operator

0 P, P
cw| P, 0 P, 313b
P, P, 0

where the block matrices P are discrete derivative operators [5]. Substituting

e %M e, W%M,h 514

and using the relation C ¥ CT,(11) and (12) can be written as a system of ordinary differential equations (ODE) of the form

i @ ) 0 Me]/ZCTM#”Z o " 1/2?
de \ M, 2, 17 0 I 60 ' §15p

Aprr

Since Agr is a skew-symmetric matrix its eigenvalues are either zero or pairwise conjugate imaginary. The semi-discrete FIT
equations preserve the Hamiltonian structure of the Maxwell’s equations in continuum. This guarantees the method to pre-
serve the electromagnetic energy [6].

3. Semi-discrete formulation of the Finite Volume Method

The Finite Volume Method is derived from Faraday’s and Ampére 's law in conservative form. This is considered in the
one-dimensional case using the z-coordinate only and, for simplicity, neglecting current sources

L] ] ] F1D
%Ub%Fan%O, U1/4<EE ) 816b

,uI?IlD
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with E'° 4 8E,, E,b" and H® v 8Hy, H,b". The flux function F is given by
L]

FoUb Y40 Hy,HyE,, Eb". 817p
Integrating (16) over a finite interval in space yields

d ! d o _ .t d

— Udz —FdU bdz % 0. 018p

dt /AZ P /Az 0z !

The value of U at the interval endpoints is denoted by U . The DoF in the framework of Finite Volume Methods are integral
state variables given by

‘l ]
udip Ve —— AZiip /AZ " Udz, 819p

and
udi,b ¥a See,di,b, €e,0i,p, (th,di,b, fth,di,bb" . 5200

The width of the interval i, 2 #1..N, is denoted by Azdi,p and wdi,b is the local vector of the DoF. Inserting this into (18) and
applying the divergence theorem yields the local, semi-discrete FV formulation

d LENRDN LI
1
dtuézzb bAzalz { <U di,p ) F (U 61»—)} Y4 0, 021p
with U 8i,p"/~ located at the upper and lower interval endpoint
20,0 va Z8ib p / Azg'zp, §22p

where z8i,p is the interval midpojnt. Hence, the temporal change of the electromagnetic quantities in the interval equals the
sum of the boundary fluxes F/aU b.

Dye to th¢ definition of the DoF given in (19), the values on interval boundaries are ambiguous. There exist the two val-
ues, U and UP, referring to the interior and exterior side of the boundary. Two options [7,8] for obtaining effective interface
field values e , h consist in the central flux approximation

€ :1/4%<E§)bEx)7 h, :1/4%(1-15 be),

§23b
e, %3 (E)PE, ), h #%i(H pH,),
and the upwind flux approximation
(YbE,'f Hb) (Y E,pbH
Y
e, /4 yh bY
(szb bEb) (z H, E
824p

(YbEprb) (YE H

X

y YPpy

(zb ) (z H, bE,
y Ppz

with

Z v S and Y v 525b
u zZ

The upwind values are the exact solution of the Riemann problem for Maxwell’s equations with piecewise constant initial
data after an infinitesimal time span [8].

The values on the positive and negative side of the interval boundary are reconstructed from the electromagnetic field
within the interval i, applying the linear ansatz

Eydi,, 2P Va €,0i,p6z  z0i,bbsdexp 326p

))
" )
X Ppz

)

)

for the E, component and likewise for all other components. The slope s is an approximation of arbitrary order to the deriv-
ative, e.g.

L, 0
soexp &EX. 027p
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Different FV methods use different slope definitions. In Godunov’s method, it is chosen as
sSde,p 4 0 328p

yielding a piecewise constant reconstruction within every cell. Other methods use the volume average in neighboring cells to
construct the slope. For the Lax-Wendroff scheme, the slope reads

exdizp1p exdizP .
ST 7> 701D,
s™Wagp vy { PP B N 529
200,p z3i, 1p ? z< Zalzp‘
In Fromm'’s scheme, central differences are used for the approximation
edi;p1p e i, 1p
Feep Yo =~ . . 330p
SO e p1p z8i, 1p
Given one of these slope approximations, the reconstructed boundary values of E, are obtained by
. N . A i D
Edip™-viedinp, 2 sen 831b
All other components are evaluated analogously.
Arranging the semi-discrete FV formulation in the form of a system of ODEs yields (cf. (15))
d/e e
— Ya A a32p
it (1) A1),
with the vectors of DoF e and h. The system matrix employing central fluxes reads
0 0 0 D.'P,
0 0 D.'P, 0
Aqyy Ve ] , a33p
D, P, 0 0
D/'P, 0 0 0

where the block matrix P; is the discrete FV derivative operator and D, ¥ diagdudi,bp, D, ¥ diagdedi,pb are the material matri-
ces. It allows for identifying the discrete FV curl operator C for the considered one-dimensional case

0 P,
CY . 934b
) (Pz 0 )

Using the substitutions (14) the system matrix of the central flux FVM reveals a skew-symmetric form. It is formally identical
to the FIT system matrix and exhibits pairwise conjugate imaginary eigenvalues.
In the case of the upwind flux formulation, the system matrix reads

U, 0 0 D'P,
ar vl O U DR 0 §35b
M 0 D'P. U 0
D'P, 0 0 Uy

with the upwind operators U, and U,. This matrix is no longer skew-symmetric. Its eigenvalues are either zero or pairwise
conjugate complex.

4. Properties of the semi-discrete FIT and FVM

The two methods introduced above are investigated for their dispersion and dissipation properties by means of a von
Neumann analysis [3]. This analysis assumes an infinite grid of identical cells. It is, hence, sufficient to consider one repre-
sentative cell. For a plane wave solution

E eiawt ki 336b
the DoF of neighboring cells are obtained by the multiplication with a phase factor, e.g.
eydi, p 1p Ya e,di,p e ke 8§37p

for the x-directed FIT electric voltage in the neighboring cell along the positive z-direction. This allows for establishing a local
eigenvalue equation. For the FIT its solutions /, are real-valued. The corresponding dispersion relation reads [9]
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: kuAu 2 2
) KS‘“E_HZU ] Y, (%) with u 2 fx, y, zg. BE
2

u

If the plane waves are assumed to propagate along an axis of the coordinate system, e.g. the z-axis, all but one term of the
sum are equal to zero. Then, the relation reduces to

2sin <%) Yy Azg. 339p
2 c

In Fig. 2 the normalized angular frequency is plotted as a function of the phase advance per cell, , along the coordinate z
B Vak,Az. 340p

The graph shows that all discrete waves lag behind their continuous counterpart independently of the grid resolution. In the
long wave limit 38 ¥ Op, the physical phase speed is recovered.

For the upwind formulation of the FVM the local eigenvalue problem has complex solutions /4 2 C. The dispersion rela-
tion can be written in the general form

dokAz> AdkAZD Ve Az%7 s41p
with the phase function @ and the amplification function A

PokAzb Vs eiRea | 642p

AdkAzb Vs e 4, 343p

For the slope definitions given in Egs. (28)-(30), they read

Godunov:
@CakAzb Vs sindkAzb, 544p
ASskAzb v, expdcosdkAzd 1, 845b

Lax-Wendroff:

PWEkAZb V452 cosdkAzbb sindkAzb, 846b
AW akAzb Vi exp <4 sin* (’%) > 347b
Fromm:
B 3kAZD Vi <3%56km> sindkAzb, 548p
AFakAZb Y4 exp (2 sin* (%) ) 349p
Azw/c
A
™ PR
m/2 L
-T - /2 e /2 T b
=T w2
’ < _7T

Fig. 2. The plot shows the numerical phase advance of plane waves in the grid space traveling along the z-axis in comparison to the phase advance in
continuous space (dashed line). Discrete waves of all frequencies show a phase lag in comparison to the continuous case. In the long wave limit §8 ¥ 0p the
physical phase velocity is recovered.
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Comparing the semi-discrete dispersion relations of the FIT (39) and Godunov’s method (44), it is evident that Godunov’s
method requires twice the grid resolution in order to yield the same phase accuracy. This is a direct consequence of the stag-
gered pair of grids employed by the FIT. In Fig. 3 the dispersion graphs and dissipation graphs are shown. Instead of the
amplification, the damping 81 Ap is plotted. From these graphs it can be concluded that Fromm'’s method has the best dis-
persion properties. The damping increases along with j for each of the three methods. For the Lax-Wendroff and Fromm'’s
method, however, damping is low for reasonably small values of  (cf. Table 1). In the long wave limit §8 ¥ Op, the error in
phase as well as the damping tend to zero for all three FVM-type methods.

With these dispersion relations at hand (Egs. (39), (44), (46) and (48)), an expression for the error in the numerical phase
advance can be established. For waves propagating along a coordinate it is given by

ABYak,Az  PdkAzb, 050p

where the phase function @ is taken from the dispersion relation of the respective method. This expression can be expanded
into a power series about the point g % 0. This yields

CAZ kA
A & 920

in the case of the FIT. The leading term of this long wave approximation, defines the asymptotic order of the dispersion error
[10]. For the three FVMs following the same procedure yields

a51p

G(3) 1—AS(3)
™ . 1.00
/2 ,/"/ 0.75
(a) & /2 ] /2 ) 050
)2 025
g _ﬂ- -T2 /2 gl
oMV () 1= AW(B)
w1 P 1.00
/2 0.75
O N 050
//'-W/g 0.25
g o S /2 gy

1—A%(f)

™ o 1.00
/2 g 0.75
(C) -7 -2 = /2 ™ s 0-50
/2 0.25
o -T2 /2 gl

Fig. 3. Grid dispersion and dissipation diagrams for the Godunov (a), Lax-Wendroff (b) and Fromm (c) method. The plots show the numerical phase advance
@ and damping 1  A. For Godunov’s method, analogously to the FIT, all waves in the grid space lag behind the continuous case (dashed line). However, a
comparison to the dispersion relation of the FIT (see Fig. 2) reveals, that the grid resolution has to be doubled in order to yield the same result. The Lax-
Wendroff and Fromm method show a phase advance or a phase lag depending on the actual g with Fromm'’s method clearly performing best. Dissipation
increases with f for each of the three methods. For the Lax-Wendroff and Fromm’s method, however, damping is low in a larger neighborhood of f % 0.
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Table 1
Amplification factors for resolutions of 5, 8, 12, and 15 grid points per wavelength.
5 8 12 15
Godunov 0.501 0.746 0.875 0917
Lax-Wendroff 0.620 0918 0.982 0.993
Fromm 0.788 0.958 0.991 0.996
Godunov:
3 A3 5 A5
ap K éz ki% , 8520
Lax-Wendroff:
K AZ Tk AZ
AB e 353p
Fromm:
33 5 A5
ap 9AZ13KAZ 550
12 240

The dominant error term is of the order three. All schemes are, thus, second order accurate in the long wave limit 33 ¥ 0p
with respect to numerical dispersion errors (see Fig. 4 for an illustration).

A similar expansion can be done for the dissipation error of the FVMs (Eqs. (45), (47) and (49)). It reveals that Godunov’s
method is first order accurate and the Lax-Wendroff and Fromm scheme are third order accurate with respect to numerical
dissipation errors.

The above expressions for the asymptotic orders of the dispersion error do not explain the better dispersion behavior of
Fromm'’s method, which was observed in Fig. 1. Since a wave packet was considered there, also the group velocity has to be
investigated. To this end, we differentiate the phase functions (39), (44), (46) and (48) with respect to k. In Fig. 5 the numer-
ical group velocities v, are plotted. There, and for the remainder of this article, the curves are plotted within g 4% 7/2,7/2
only. Since the spectrum is actually not continuous but discrete with g ¥ frt/n;, n, ¥a 1..N,g, only the mode at § % 7 is ne-
glected in the plots. For the FV methods this mode does not propagate (see Fig. 3). Averaging v, in 7/2,7/2 yields mean
group velocities for all methods, which are listed in the center column of Table 2. The average group velocity of Fromm’s
method is closest to the speed of light in continuum. Hence, it will usually preserve the envelope of a wave packet best.

Additionally, the error in normalized phase velocity of every discrete mode can be evaluated as

En Vi - @(E) 855b
n, n,
The errors are gathered in the vector E. Its 2-norm is given in the right column of Table 2 for N, ¥ 100. This measure as well

as the mean group velocity confirm the overall better dispersion behavior of Fromm'’s method in comparison to the FIT,
which we observed in the introductory example in Fig. 1.

1072

1074

log |AB]

10-6

10-8

0.01 0.03 0.05 0.10  0.20 0.30 0.500.701.00 2.00 3.00

log 3

— FIT Godunov — Lax-Wendroff — Fromm

Fig. 4. Dispersion error of the FIT and FVMs: In the long wave limit of g ¥ 0 the dispersion error of all methods tend to zero in third order.
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Fig. 5. Plots of the normalized group velocity for the FIT (top left), Godunov (top right), Lax-Wendroff (bottom left) and Fromm (bottom right) method.

Table 2

Normalized mean group velocities and 2-norm of normalized phase velocity errors for all methods considered.
Method vg/C KEk,
FIT 0.90 0.17
Godunov 0.63 0.61
Lax-Wendroff 1.27 0.52
Fromm 0.95 0.08

5. The three-dimensional formulation of the hybrid scheme in space

The hybridization of the Finite Integration Technique and the Finite Volume Method in three-dimensional space is based
on a separation of the continuous curl operator according to

d d d é
0 & 00 3 0 £ 0
1 2 2 1 a9 0
rvwl2 o 2lwlo o 2|lplz 0o o -
2 2 g 2.2 0 0 0 0
y x y
el ,C2D-AT 7aCID-FY

The above idea of splitting the curl operator was proposed in [12]. There, however, the FIT discretization was used exclu-
sively. This method is called LT-FIT in the following. Here, however, for the discretization of the transverse two-dimensional
subproblem we want to employ the FIT, while the FVM is applied to the discretization of the longitudinal one-dimensional
problem. The transverse and longitudinal directions are specified with respect to the preferred direction of the physical prob-
lem under consideration. This is illustrated in Fig. 6.

Unlike the FIT, the FVM does not employ a staggered grid doublet. The three-dimensional computational grid, thus, con-
sists of dual orthogonal grid layers in x  y-planes which are connected in a non-staggered fashion along the z-coordinate. In
Fig. 7 a detailed sketch is shown. The primary FIT grid is indicated in black, the dual in gray. The staggered FIT grid layers are
arranged in the center of the cells along the z-axis. The outline of groups of four cells is indicated with black dashed boxes.
Within this setup, the FVM operates along the dash-dotted z-directed lines.

5.1. Coupling of the degrees of freedom

The electric and magnetic field DoF of the FIT and FVM are defined differently. The former are integral state variables ob-
tained by an integration over edges (Egs. (1) and (2)). The latter are integral state variables obtained by cell averaging (19). In
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Frp
F[T
Frp

FVM FVM

Y z

Fig. 6. Illustration of the FI-FV scheme in space. The FIT is applied in parallel x y-planes of the computational grid. The FVM is applied in the z-direction
for connecting these planes.

~o~ ; ; f—rmrm
(Zaq‘azyazz) ) J(Zml.wlz:""' 1)

i i1

[
I
o s - o —

Fig. 7. FI-FV grid setup and coupling of DoFs. The FIT is applied in x  y-planes. There, staggered grid doublets are employed. The x- and y-directed electric
voltages of two grid points are shown in red, the respective magnetic voltages in green. In the z-direction, the FVM is applied, which requires one grid only.
Thex y-layers are positioned in the center of the cells in z-direction. The FVM operates along the indicated dash-dotted lines. The points 1 and 2 depict the
positions where the numerical boundary fluxes are evaluated.

the following, their coupling is addressed. In Fig. 7, two primary and the respective dual nodes, marked as dots, are
iAndexed by 6ix,iy,izb and 9iy,iy,i, p 1p. The red arrows indicate the electric grid voltages jxéix, Iy, I;p, Eyajé,il,izb and
ex0iy, iy, i, P 1p, eydiy,iy,1; p 1b. The green arrows indicate the respective magnetic voltages h,diy,iy,i.p, h,diy,i,,i,p and
hydiy, iy, i, p 1p, hydiy, iy,i, p 1b. For simplicity, the indexes i, and i, are omitted in the following. The notation is, thus,
e,di,h, etc. for the FIT variables and e,di,b, etc. for the FV variables.

In order to obtain a sampled field value from the FIT voltages in the middle of an edge, we calculate

e,dip
Ax3ip

ex0i,p Va a57p

for the electric x-component and likewise for all other quantities. The involved grid voltages are oriented perpendicularly to
the z-axis. The value é,3i,p is taken to be constant along z within one cell. Then, the FV variable is obtained by

. 1 s s
PYsy—r— bdz V. b. b
ex0i,p Vs AZiip /A i e,0i,pdz Vs e,0i, 858

The reconstruction of the field within a cell given by (26) can be written as
E\8i,, zb Ya 6,081,082  z3i,Pbsde,b. 359p

This allows for calculating the values E,, H, and E,, H, at the FV-cell interfaces, at positions 1 and 2, as indicated in Fig. 7.
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5.2. Matrix formulation

The semi-discrete formulation of the FI-FV scheme as a system of ODEs reads

d /e e
() mnn(), 0
where the system matrix of the three-dimensional hybrid FI-FV scheme is given by
U, €
Ag_pyv Ya . 361p
(e o)
The block matrices are given by
u 0 O
Us,%| 0 U, 0|, 362p
0 0 O
Uu 0 O
Us%| 0 U 0], 363p
0 0 O
1
0 (T’;> D,'PIT"  M.P,
1
Cy Vs (Tfj) D 'P'T" 0 M,P, | 364p
M, P, M, P, 0
1
0 () D,/P.T; M,P,
Y. 1 . p
C%| (1) 'D,'P.T: 0 M, P, 865
M“_]xPy MH?ny 0

The discrete derivative operators Py, are the respective FIT operator while P, is the FV operator. The matrices Ty, T}, Tﬁ and
T; transform the FIT variables to the FV variables. They read

T¢ Ya diagbediy, iy, i, 4diagdAxdiy, iy, i,pb ', 8660
T ¥s diagdediy, iy, i, #diagdAydiy, iy, ipb ', 867p
T v; diagdpsdiy, iy, i, idiagdAxdiy, iy,i,pb ', 368p
T} v diagdjudiy, iy, i.pb diagdAydiy, iy, ipp . 369p

6. Time integration and longitudinal-transverse split operator method
6.1. Time integration in the central flux case

The system matrices of the FIT as well as the central flux formulation of the FVM (Egs. (15) and (33)) exhibit a Hamiltonian
structure. For the numerical integration of Hamiltonian systems symplectic integrators are widely used since they strictly
conserve the volume occupied in the phase space spanned by the electric field E and the magnetic field H. For linear systems,
this in turn guarantees for no accumulation of the error in the total energy of the discrete solution [6] in the long term.

The simplest symplectic time integration scheme is the leap-frog scheme. It is commonly applied for the solution of tran-
sient problems with the FIT [4]. The leap-frog scheme makes use of a central difference approximation of the derivative in
time. The fully discrete system of equations reads

unbl u”"
1, n
—Af Y, Au”, 070p
with
enb1/2
L e §71p

where At denotes the time step and n denotes the time step number. The system matrix A corresponds to (15) or (33),
respectively. Arranging (70) in the form

u™ v, Tu" §72b



yields the update equation. The FIT iteration matrix T reads

v ( AtMel/chMul/z )
4 .
AtM,'?CM, 2 T

2 1/2 T 1 1/2
APM,. M, 'eM,
The FV iteration matrix in the centered case is obtained accordingly. The s
vation can be expressed by the condition

TT(O l>T%(0 l>,

I 0 10
which holds true for the iteration matrix T given above.
The iteration matrix T is determined by the system matrix A of the resy
integration scheme applied. The eigenvalues of the FIT iteration matrix /t 1

. 1
JrYaor o2 1 witha%lp iéAtlAbz.

Within the stability limit for the time step [4], the leap-frog scheme map
FVM central flux system matrix to the unit circle in the complex plane (K

6.2. Time integration in the upwind case

A symplectic time integration method cannot be applied to a system w
the following. In Fig. 9 (left) an exemplary distribution of eigenvalues of th
plane. If the leap-frog scheme is applied to the time integration, the relati
and the iteration matrix is given by (75). The two parts of the relation

(oc pocz 1) of the unit circle and once to the outside (cx o) P 1). Th

matrix is shown in Fig. 9 (right). Obviously eigenvalues with j/irj > 1 appe
the respective mode. Consequently, the fully discrete method is unstable

o2

Runge-Kutta-type methods (RK) [11] are viable choices for the time integration of th

tions for the predictor-corrector method (RK2) and the classical RK4 reac

2
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Fig. 9. Exemplary eigenvalue distribution of the FI-FV hybrid system matrix (left) and iteration matrix (right) in the complex plane. The iteration matrix
results from the application of the leap-frog scheme.

Im Im

Fig. 10. Typical eigenvalue distributions of FI-FV iteration matrices resulting from Fig. 9 (left) and the application of the predictor-corrector scheme (left)
and the classical Runge-Kutta-4 method (right).

Jr¥alp Atia b §78p

BALIAD? b 3ALIAP3 b 3ALIaD*
2 6 24 |

In contrast to the FIT the absolute value of the eigenvalues /t is in general less than one. Hence, the FVM is dissipative while
the energy of the discrete solution is preserved within the FIT.

6.3. Application of the LT split operator technique for time integration

In Section 5, a directional separation of the continuous curl operator into a two-dimensional transverse and a one-dimen-
sional longitudinal operator was performed. In the following, the system matrix of the FI-FV scheme (61) is represented in
the form

Ar_rv ¥4 Ap—rvr P Afi—rvr, d79p

where Ap_pyr is the FIT discretization of the transverse problem and Ag_py,. contains the FVM discretization of the longitu-
dinal problem. The exact solution of the semi-discrete equation (60) within one time step At is formally given by

u™l y, e Mgy, @ AtaATbALbun7 380p
where the FI-FV subscripts were omitted. The update operator can be separated according to

e A1, @ ABATPAL 1/ o AtAT @ At B QAL 381p
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Fig. 12. Exemplary eigenvalue distribution of the longitudinal system matrix A, (left) and the iteration matrix T, for an application of the explicit Euler
scheme (right).
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Fig. 13. Polar plots of the amplification (top), the normalized angular frequency (bottom left), and the frequency error (bottom right) of the FIT for waves
traveling along a coordinate in a two-dimensional domain. The gray dashed unit circle indicates the exact solution. The curves correspond to various time
steps with respect to the maximally stable CFL number v for two-dimensional problems, which relates to vby v ¥ v/ 2. The amplification plot shows the
neutral stability for any choice of the time step within the stable regime.

where the temporal derivative of e, was replaced by the spatial derivative of h, according to Ampére ’s law in one dimension.
The spatial derivative is replaced by one of the slope approximation specified in (28)-(30)

BEBip™ 20 v e 0ip" b / %séexb % %séhyb‘ 889p
The iteration matrix for the longitudinal problem T; is given by

TLoAth a1 p AtAL, d90p
so that the eigenvalues of A, and T; relate according to

It Yalp Atia. d91p

Exemplary eigenvalue distributions of both matrices are plotted in Fig. 12.
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Fig. 14. Polar plot of the normalized angular frequency (left) and the freq