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A hybridized scheme for the numerical solution of transient electromagnetic field prob-
lems is presented. The scheme combines the Finite Integration Technique (FIT) and the
Finite Volume Method (FVM) in order to profit from the computational efficiency of the
FIT while taking advantage of the superior dispersive properties of the FVM. The scheme
is based on the longitudinal–transverse (LT) splitting of the discrete curl operator. The
FIT is employed for discretizing the two-dimensional subproblem while the one-dimen-
sional problem is discretized according to the FVM. The scheme offers benefits for the sim-
ulation of multiscale setups, where the size of the computational domain along one
preferred direction is electrically much larger than along the others. In such situations,
the accumulation of dispersion errors within hundreds of thousands of time steps usually
deteriorates the solution accuracy. The hybrid scheme is applied in combination with
adaptive mesh refinement, yielding an efficient scheme for multiscale applications.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The development of a hybrid numerical method is motivated from the idea of combining the strengths of different exist-
ing methods. One appealing feature of the Finite Integration Technique (FIT) is the preservation of the physical properties of
Maxwell’s equations in the discrete space, e.g. energy conservation [1,2]. The simplicity of the FIT leads to a computationally
inexpensive algorithm, requiring a minimum of computer memory and computational time. Finite Volume Methods (FVM),
on the other hand, are known for their low numerical dispersion [3]. They are traditionally applied to problems from fluid
dynamics, where the accurate simulation of shocks and turbulences critically depends on small dispersion errors. However,
the FVM is computationally more expensive than the FIT. The main idea of a hybrid Finite Integration–Finite Volume Scheme
is, hence, to combine the computational efficiency of the FIT with the FVM such that improved dispersion properties emerge
along one direction in space. This hybrid scheme offers benefits for the simulation of wave propagation in all applications
exhibiting a preferred direction. Such applications frequently occur, e.g. when simulating waveguides, strip lines, or optical
fibers. In addition, the simulation of linear particle accelerators forms a class of multi-physics problems, suitable for the
application of the hybrid scheme.

The superior dispersive behavior of the FVM compared to the FIT is illustrated in a simple example. The propagation of a
trapezoidal wave packet in the one-dimensional space is simulated using a low spatial resolution. The initial state of the
. All rights reserved.
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Fig. 1. Simulation of a rectangular wave packet with the FIT and the FVM. The initial field distribution is imposed on a very coarse grid (top). The length of
the wave packet covers six cells and propagates in positive z-direction. The simulations employ identical grid spacings. The middle (FVM) and bottom (FIT)
plots show the final distribution of the electric field after 160 time steps. The superior numerical dispersion behavior of the FVM compared to the FIT is
visible.
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packet is plotted in Fig. 1 (top). The orientations of the electric and magnetic field are chosen such that the wave vector ~k
points in the positive z-direction. For the simulation, the FIT and the FVM using the same spatial grid resolution are applied.
In the FVM case, the Fromm approach is applied (see Section 3). The results are illustrated in the middle (FVM) and bottom
graph (FIT) of Fig. 1. The better dispersion properties make FV methods an appropriate choice for handling high-frequency
fields in electrically long structures.

The remainder of this article is organized as follows: the semi-discrete formulation of the Finite Integration Technique
and the Finite Volume Method are reviewed in Sections 2 and 3. For the FIT the discretization procedure in the three-dimen-
sional space is described. Since the FVM is applied along one space dimension only, its review is limited to the one-dimen-
sional case. The numerical fluxes considered are the Godunov, Lax-Wendroff, and Fromm flux, as well as the central flux. In
Section 4, a von Neumann analysis is carried out for all semi-discrete formulations in order to derive their dispersion and
dissipation properties. The hybridization of the two methods is described in detail in Section 5, followed by the introduction
of the longitudinal–transverse split operator technique in Section 6. After discretizing the time variable, the dispersion and
dissipation properties of the fully discretized method are investigated. This is followed by some illustrative examples and
conclusions. Note that throughout the article linear, isotropic, lossless and non-polarized media are considered.

2. Semi-discrete formulation of the Finite Integration Technique

The Finite Integration Technique makes use of a pair of dual orthogonal grids ðG; eGÞ for the spatial discretization of
Maxwell’s equations [4]. Throughout this article regular Cartesian grids are considered. The number of grid points along
the axes are denoted by Nx; Ny and Nz. The sets of edges and faces of the primary and secondary grid are denoted by
E; A and eE; eA, respectively. The degrees of freedom (DoF) are the electric and magnetic integral state variables e

_
and h

_

,
which are defined as
e
_

:¼
Z

c

~E � d~s; c 2 E; ð1Þ

h
_

:¼
Z

~c

~H � d~s; ~c 2 eE: ð2Þ
They are named the electric and magnetic grid voltages. The electric field is denoted by~E and the magnetic field by ~H. As a
convention, we use capital letters for the space-continuous field quantities and lower case letters for space-discrete
quantities.

Evaluating Faraday’s and Ampére ’s laws
Z
@A

~Eð~r; tÞ � d~s ¼ �
Z

A

@

@t
~Bð~r; tÞ � d~A; A 2 A; ð3ÞZ

@eA ~Hð~r; tÞ � d~s ¼
Z
eA @

@t
D
!

ð~r; tÞ þ J
!

ð~r; tÞ
� �

� d~A; eA 2 eA; ð4Þ
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for one face of a primary grid cell and one face of a dual grid cell yields their local semi-discrete FIT formulations
X4

j¼1

� e
_

ðjÞ ¼ � d
dt

b
_
_

; ð5Þ

X4

j¼1

� h
_

ðjÞ ¼ d
dt

d
_
_

þ j
_
_

; ð6Þ
_

where j numbers the four edges of the face. The orientation of the involved voltages e
_

ðjÞ; hðjÞ with respect to the orientation
of the loop integral in (3) and (4) determines the summation signs appearing in (5) and (6). The electric and magnetic inte-

gral fluxes d
_
_

and b
_
_

are no additional degrees of freedom. They are defined as
d
_
_

:¼
Z
eA D

!
�d~A; eA 2 eA; ð7Þ

b
_
_

:¼
Z

A

~B � d~A; A 2 A; ð8Þ
and relate to the respective voltage according to
d
_
_

¼ M� e
_
; b

_
_

¼ Ml h
_

; ð9Þ
where M� and Ml are suitably averaged discrete material parameters [5] and �;l denote the permittivity and permeability.
The integral state variable of the current flux j

_
_

is defined as
j
_
_

:¼
Z
eA J

!
�d~A; eA 2 eA: ð10Þ

_

Convective currents, e.g. arising from the motion of free charged particles are included in j
_

.
Gathering the electric and magnetic voltages in the vectors of DoF, e

_
and h

_

, allows for stating the discrete Faraday’s and
Ampére ’s law for the complete computational domain in semi-discrete form
C e
_

¼ �Ml
d
dt

h
_

; ð11Þ

eC h
_

¼ M�
d
dt

e
_

þ j
_
_

: ð12Þ
The matrices M� ¼ diagðM�Þ and Ml ¼ diagðMlÞ contain the cell-wise defined material parameters. The FIT representations
of the curl operator C and eC resemble the structure of the continuous curl operator
C ¼
0 �Pz Py

Pz 0 �Px

�Py Px 0

0B@
1CA; ð13Þ
where the block matrices P are discrete derivative operators [5]. Substituting
e
_0 ¼ M1=2

� e
_
; h

_
0 ¼ M�1=2

l h
_

ð14Þ
and using the relation C ¼ eCT, (11) and (12) can be written as a system of ordinary differential equations (ODE) of the form
d
dt

e
_0

h
_

0

 !
¼

0 M�1=2
� CTM�1=2

l

�M�1=2
l CM�1=2

� 0

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AFIT

e
_0

h
_

0

 !
� M�1=2

� j
_
_

0

0@ 1A: ð15Þ
Since AFIT is a skew-symmetric matrix its eigenvalues are either zero or pairwise conjugate imaginary. The semi-discrete FIT
equations preserve the Hamiltonian structure of the Maxwell’s equations in continuum. This guarantees the method to pre-
serve the electromagnetic energy [6].

3. Semi-discrete formulation of the Finite Volume Method

The Finite Volume Method is derived from Faraday’s and Ampére ’s law in conservative form. This is considered in the
one-dimensional case using the z-coordinate only and, for simplicity, neglecting current sources
@

@t
U
!

þ @

@z
FðU

!
Þ ¼ 0; U

!
¼ �~E1D

l~H1D

 !
; ð16Þ
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with ~E1D ¼ ðEx; EyÞT and ~H1D ¼ ðHx;HyÞT. The flux function F is given by
FðU
!

Þ ¼ ð�Hy;Hx; Ey;�ExÞT
: ð17Þ
Integrating (16) over a finite interval in space yields
d
dt

Z
Dz

U
!

dz þ
Z

Dz

@

@z
FðU

!
�Þdz ¼ 0: ð18Þ
The value of U
!

at the interval endpoints is denoted by U
!

�. The DoF in the framework of Finite Volume Methods are integral
state variables given by
uðizÞ :¼ 1
DzðizÞ

Z
DzðizÞ

U
!

dz; ð19Þ
and
uðizÞ ¼ ð�exðizÞ; �eyðizÞ;lhxðizÞ;lhyðizÞÞT
: ð20Þ
The width of the interval iz 2 ½1::Nz� is denoted by DzðizÞ and uðizÞ is the local vector of the DoF. Inserting this into (18) and
applying the divergence theorem yields the local, semi-discrete FV formulation
d
dt

uðizÞ þ 1
DzðizÞ

F U
!

�ðizÞ^
� �

� F U
!

�ðizÞ_
� �� �

¼ 0; ð21Þ
with U
!

�ðizÞ^=_ located at the upper and lower interval endpoint
zðizÞ^=_ ¼ zðizÞ þ =� DzðizÞ
2

; ð22Þ
where zðizÞ is the interval midpoint. Hence, the temporal change of the electromagnetic quantities in the interval equals the
sum of the boundary fluxes F jðU

!
�Þ.

Due to the definition of the DoF given in (19), the values on interval boundaries are ambiguous. There exist the two val-
ues, U

!
� and U

!
þ, referring to the interior and exterior side of the boundary. Two options [7,8] for obtaining effective interface

field values e�; h� consist in the central flux approximation
e�
x :¼ 1

2 Eþ
x þ E�

x

� �
; h�

x :¼ 1
2 Hþ

x þ H�
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� �
;
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2 Hþ

y þ H�
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;

ð23Þ
and the upwind flux approximation
e�
x :¼

YþEþ
x � Hþ
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þ Y�E�
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Yþ þ Y� ;

h�
x :¼

ZþHþ
x þ Eþ

y

	 

þ Z�H�

x � E�
y

	 

Zþ þ Z� ;

e�
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h�
y :¼

ZþHþ
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x

	 

þ Z�H�

y þ E�
x

	 

Zþ þ Z� ;

ð24Þ
with
Z� :¼

ffiffiffiffiffiffi
��

l�

s
and Y� :¼ 1

Z� : ð25Þ
The upwind values are the exact solution of the Riemann problem for Maxwell’s equations with piecewise constant initial
data after an infinitesimal time span [8].

The values on the positive and negative side of the interval boundary are reconstructed from the electromagnetic field
within the interval iz applying the linear ansatz
Exðiz; zÞ ¼ exðizÞðz � zðizÞÞsðexÞ ð26Þ
for the Ex component and likewise for all other components. The slope s is an approximation of arbitrary order to the deriv-
ative, e.g.
sðexÞ ’ @

@z
Ex: ð27Þ
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Different FV methods use different slope definitions. In Godunov’s method, it is chosen as
sGðexÞ :¼ 0 ð28Þ
yielding a piecewise constant reconstruction within every cell. Other methods use the volume average in neighboring cells to
construct the slope. For the Lax-Wendroff scheme, the slope reads
sLWðexÞ :¼
exðizþ1Þ�exðizÞ

zðizþ1Þ�zðizÞ ; z > zðizÞ;
exðiz�1Þ�exðizÞ

zðizÞ�zðiz�1Þ ; z < zðizÞ:

8<: ð29Þ
In Fromm’s scheme, central differences are used for the approximation
sFðexÞ :¼ exðiz þ 1Þ � exðiz � 1Þ
zðiz þ 1Þ � zðiz � 1Þ : ð30Þ
Given one of these slope approximations, the reconstructed boundary values of Ex are obtained by
E�
xðizÞ^=_ ¼ exðizÞ þ =� DzðizÞ

2
sðexÞ: ð31Þ
All other components are evaluated analogously.
Arranging the semi-discrete FV formulation in the form of a system of ODEs yields (cf. (15))
d
dt

e
h

� �
¼ AFVM

e
h

� �
; ð32Þ
with the vectors of DoF e and h. The system matrix employing central fluxes reads
Acen
FVM ¼

0 0 0 D�1
� Pz

0 0 �D�1
� Pz 0

0 D�1
l Pz 0 0

�D�1
l Pz 0 0 0

0BBBBBB@

1CCCCCCA; ð33Þ
where the block matrix Pz is the discrete FV derivative operator and Dl ¼ diagðlðizÞÞ; D� ¼ diagð�ðizÞÞ are the material matri-
ces. It allows for identifying the discrete FV curl operator C for the considered one-dimensional case
C ¼
0 �Pz

Pz 0

� �
: ð34Þ
Using the substitutions (14) the system matrix of the central flux FVM reveals a skew-symmetric form. It is formally identical
to the FIT system matrix and exhibits pairwise conjugate imaginary eigenvalues.

In the case of the upwind flux formulation, the system matrix reads
Aup
FVM ¼

Ue 0 0 D�1
� Pz

0 Ue �D�1
� Pz 0

0 D�1
l Pz Uh 0

�D�1
l Pz 0 0 Uh

0BBBBBB@

1CCCCCCA ð35Þ
with the upwind operators Ue and Uh. This matrix is no longer skew-symmetric. Its eigenvalues are either zero or pairwise
conjugate complex.

4. Properties of the semi-discrete FIT and FVM

The two methods introduced above are investigated for their dispersion and dissipation properties by means of a von
Neumann analysis [3]. This analysis assumes an infinite grid of identical cells. It is, hence, sufficient to consider one repre-
sentative cell. For a plane wave solution
e
_

� eiðxt�~k�~rÞ ð36Þ
the DoF of neighboring cells are obtained by the multiplication with a phase factor, e.g.
e
_

xðiz þ 1Þ ¼ e
_

xðizÞ � e�ikzDz ð37Þ
for the x-directed FIT electric voltage in the neighboring cell along the positive z-direction. This allows for establishing a local
eigenvalue equation. For the FIT its solutions kA are real-valued. The corresponding dispersion relation reads [9]
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X
u

sin kuDu
2

� �
Du
2

 !2
24 35 ¼ x

c

	 
2
with u 2 fx; y; zg: ð38Þ
If the plane waves are assumed to propagate along an axis of the coordinate system, e.g. the z-axis, all but one term of the
sum are equal to zero. Then, the relation reduces to
2 sin
kzDz

2

� �
¼ Dz

x
c
: ð39Þ
In Fig. 2 the normalized angular frequency is plotted as a function of the phase advance per cell, b, along the coordinate z
b :¼ kzDz: ð40Þ
The graph shows that all discrete waves lag behind their continuous counterpart independently of the grid resolution. In the
long wave limit ðb ! 0Þ, the physical phase speed is recovered.

For the upwind formulation of the FVM the local eigenvalue problem has complex solutions kA 2 C. The dispersion rela-
tion can be written in the general form
UðkDzÞ � AðkDzÞ ¼ Dz
x
c
; ð41Þ
with the phase function U and the amplification function A
UðkDzÞ ¼ eiRe½kA �; ð42Þ
AðkDzÞ ¼ e�IkA : ð43Þ
For the slope definitions given in Eqs. (28)–(30), they read

� Godunov:
UGðkDzÞ ¼ sinðkDzÞ; ð44Þ
AGðkDzÞ ¼ expðcosðkDzÞ � 1Þ; ð45Þ
� Lax-Wendroff:
ULWðkDzÞ ¼ ð2 � cosðkDzÞÞ sinðkDzÞ; ð46Þ

ALWðkDzÞ ¼ exp 4 � sin4 kDz
2

� �� �
; ð47Þ
� Fromm:
UFðkDzÞ ¼ 3 � cosðkDzÞ
2

� �
sinðkDzÞ; ð48Þ

AFðkDzÞ ¼ exp 2 � sin4 kDz
2

� �� �
: ð49Þ
The plot shows the numerical phase advance of plane waves in the grid space traveling along the z-axis in comparison to the phase advance in
ous space (dashed line). Discrete waves of all frequencies show a phase lag in comparison to the continuous case. In the long wave limit ðb ! 0Þ the
l phase velocity is recovered.
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Comparing the semi-discrete dispersion relations of the FIT (39) and Godunov’s method (44), it is evident that Godunov’s
method requires twice the grid resolution in order to yield the same phase accuracy. This is a direct consequence of the stag-
gered pair of grids employed by the FIT. In Fig. 3 the dispersion graphs and dissipation graphs are shown. Instead of the
amplification, the damping ð1 � AÞ is plotted. From these graphs it can be concluded that Fromm’s method has the best dis-
persion properties. The damping increases along with b for each of the three methods. For the Lax-Wendroff and Fromm’s
method, however, damping is low for reasonably small values of b (cf. Table 1). In the long wave limit ðb ! 0Þ, the error in
phase as well as the damping tend to zero for all three FVM-type methods.

With these dispersion relations at hand (Eqs. (39), (44), (46) and (48)), an expression for the error in the numerical phase
advance can be established. For waves propagating along a coordinate it is given by
Fig. 3.
U and d
compar
Wendro
increas
Db ¼ kzDz � UðkDzÞ; ð50Þ
where the phase function U is taken from the dispersion relation of the respective method. This expression can be expanded
into a power series about the point b ¼ 0. This yields
Db 	 k3
z Dz3

24
� k5

z Dz5

1920
; ð51Þ
in the case of the FIT. The leading term of this long wave approximation, defines the asymptotic order of the dispersion error
[10]. For the three FVMs following the same procedure yields
Grid dispersion and dissipation diagrams for the Godunov (a), Lax-Wendroff (b) and Fromm (c) method. The plots show the numerical phase advance
amping 1 � A. For Godunov’s method, analogously to the FIT, all waves in the grid space lag behind the continuous case (dashed line). However, a
ison to the dispersion relation of the FIT (see Fig. 2) reveals, that the grid resolution has to be doubled in order to yield the same result. The Lax-
ff and Fromm method show a phase advance or a phase lag depending on the actual b with Fromm’s method clearly performing best. Dissipation

es with b for each of the three methods. For the Lax-Wendroff and Fromm’s method, however, damping is low in a larger neighborhood of b ¼ 0.



Table 1
Amplification factors for resolutions of 5, 8, 12, and 15 grid points per wavelength.

5 8 12 15

Godunov 0.501 0.746 0.875 0.917
Lax-Wendroff 0.620 0.918 0.982 0.993
Fromm 0.788 0.958 0.991 0.996
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� Godunov:
F

Db 	 k3
z Dz3

6
� k5

z Dz5

120
; ð52Þ
� Lax-Wendroff:
Db 	 � k3
z Dz3

3
þ 7k5

z Dz5

60
; ð53Þ
� Fromm:
Db 	 � k3
z Dz3

12
þ 13k5

z Dz5

240
: ð54Þ
The dominant error term is of the order three. All schemes are, thus, second order accurate in the long wave limit ðb ! 0Þ
with respect to numerical dispersion errors (see Fig. 4 for an illustration).

A similar expansion can be done for the dissipation error of the FVMs (Eqs. (45), (47) and (49)). It reveals that Godunov’s
method is first order accurate and the Lax-Wendroff and Fromm scheme are third order accurate with respect to numerical
dissipation errors.

The above expressions for the asymptotic orders of the dispersion error do not explain the better dispersion behavior of
Fromm’s method, which was observed in Fig. 1. Since a wave packet was considered there, also the group velocity has to be
investigated. To this end, we differentiate the phase functions (39), (44), (46) and (48) with respect to k. In Fig. 5 the numer-
ical group velocities vg are plotted. There, and for the remainder of this article, the curves are plotted within b ¼ ½�p=2;p=2�
only. Since the spectrum is actually not continuous but discrete with b ¼ fp=nz; nz ¼ 1::Nzg, only the mode at b ¼ �p is ne-
glected in the plots. For the FV methods this mode does not propagate (see Fig. 3). Averaging vg in ½�p=2;p=2� yields mean
group velocities for all methods, which are listed in the center column of Table 2. The average group velocity of Fromm’s
method is closest to the speed of light in continuum. Hence, it will usually preserve the envelope of a wave packet best.

Additionally, the error in normalized phase velocity of every discrete mode can be evaluated as
Enz ¼ p
nz

� U
p
nz

� �
: ð55Þ
The errors are gathered in the vector E. Its 2-norm is given in the right column of Table 2 for Nz ¼ 100. This measure as well
as the mean group velocity confirm the overall better dispersion behavior of Fromm’s method in comparison to the FIT,
which we observed in the introductory example in Fig. 1.
ig. 4. Dispersion error of the FIT and FVMs: In the long wave limit of b ! 0 the dispersion error of all methods tend to zero in third order.



Fig. 5. Plots of the normalized group velocity for the FIT (top left), Godunov (top right), Lax-Wendroff (bottom left) and Fromm (bottom right) method.

Table 2
Normalized mean group velocities and 2-norm of normalized phase velocity errors for all methods considered.

Method vg=c kEk2

FIT 0.90 0.17
Godunov 0.63 0.61
Lax-Wendroff 1.27 0.52
Fromm 0.95 0.08
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5. The three-dimensional formulation of the hybrid scheme in space

The hybridization of the Finite Integration Technique and the Finite Volume Method in three-dimensional space is based
on a separation of the continuous curl operator according to
r
 ¼
0 � @

@z
@
@y

@
@z 0 � @

@x

� @
@y

@
@x 0

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}b¼C3D

¼
0 0 @

@y

0 0 � @
@x

� @
@y

@
@x 0

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}b¼C2D-FIT

þ
0 � @

@z 0
@
@z 0 0
0 0 0

0B@
1CA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}b¼C1D-FV

:
ð56Þ
The above idea of splitting the curl operator was proposed in [12]. There, however, the FIT discretization was used exclu-
sively. This method is called LT-FIT in the following. Here, however, for the discretization of the transverse two-dimensional
subproblem we want to employ the FIT, while the FVM is applied to the discretization of the longitudinal one-dimensional
problem. The transverse and longitudinal directions are specified with respect to the preferred direction of the physical prob-
lem under consideration. This is illustrated in Fig. 6.

Unlike the FIT, the FVM does not employ a staggered grid doublet. The three-dimensional computational grid, thus, con-
sists of dual orthogonal grid layers in x � y-planes which are connected in a non-staggered fashion along the z-coordinate. In
Fig. 7 a detailed sketch is shown. The primary FIT grid is indicated in black, the dual in gray. The staggered FIT grid layers are
arranged in the center of the cells along the z-axis. The outline of groups of four cells is indicated with black dashed boxes.
Within this setup, the FVM operates along the dash-dotted z-directed lines.

5.1. Coupling of the degrees of freedom

The electric and magnetic field DoF of the FIT and FVM are defined differently. The former are integral state variables ob-
tained by an integration over edges (Eqs. (1) and (2)). The latter are integral state variables obtained by cell averaging (19). In



Fig. 6. Illustration of the FI–FV scheme in space. The FIT is applied in parallel x � y-planes of the computational grid. The FVM is applied in the z-direction
for connecting these planes.

Fig. 7. FI–FV grid setup and coupling of DoFs. The FIT is applied in x � y-planes. There, staggered grid doublets are employed. The x- and y-directed electric
voltages of two grid points are shown in red, the respective magnetic voltages in green. In the z-direction, the FVM is applied, which requires one grid only.
The x � y-layers are positioned in the center of the cells in z-direction. The FVM operates along the indicated dash-dotted lines. The points 1 and 2 depict the
positions where the numerical boundary fluxes are evaluated.
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the following, their coupling is addressed. In Fig. 7, two primary and the respective dual nodes, marked as dots, are
indexed by ðix; iy; izÞ and ðix; iy; iz þ 1Þ. The red arrows indicate the electric grid voltages e

_

xðix; iy; izÞ; e
_

yðix; iy; izÞ and
e
_

xðix; iy; iz þ 1Þ; e
_

yðix; iy; iz þ 1Þ. The green arrows indicate the respective magnetic voltages h
_

xðeix ; eiy ; izÞ, h
_

yðeix ; eiy ; izÞ and
h
_

xðeix ; eiy ; iz þ 1Þ; h
_

yðeix ; eiy ; iz þ 1Þ. For simplicity, the indexes ix and iy are omitted in the following. The notation is, thus,
e
_

xðizÞ, etc. for the FIT variables and exðizÞ, etc. for the FV variables.
In order to obtain a sampled field value from the FIT voltages in the middle of an edge, we calculate
êxðizÞ ¼ e
_

xðizÞ
DxðizÞ

ð57Þ
for the electric x-component and likewise for all other quantities. The involved grid voltages are oriented perpendicularly to
the z-axis. The value êxðizÞ is taken to be constant along z within one cell. Then, the FV variable is obtained by
exðizÞ ¼ 1
DzðizÞ

Z
DzðizÞ

êxðizÞdz ¼ êxðizÞ: ð58Þ
The reconstruction of the field within a cell given by (26) can be written as
Exðiz; zÞ ¼ êxðizÞðz � zðizÞÞsðêxÞ: ð59Þ
This allows for calculating the values E�
x ; H�

y and E�
y ; H�

x at the FV-cell interfaces, at positions 1 and 2, as indicated in Fig. 7.
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5.2. Matrix formulation

The semi-discrete formulation of the FI–FV scheme as a system of ODEs reads
d
dt

e
h

� �
¼ AFI—FV

e
h

� �
; ð60Þ
where the system matrix of the three-dimensional hybrid FI–FV scheme is given by
AFI—FV ¼
UH �CE

CH UE

� �
: ð61Þ
The block matrices are given by
UH ¼
Uh 0 0
0 Uh 0
0 0 0

0B@
1CA; ð62Þ

UE ¼
Ue 0 0
0 Ue 0
0 0 0

0B@
1CA; ð63Þ

CH ¼

0 � Th
y

	 
�1
D�1
� PT

z Th
y �M�1

�;x Py

Th
x

	 
�1
D�1
� PT

z Th
x 0 M�1

�;yPx

M�1
�;x Py �M�1

�;yPx 0

0BBBB@
1CCCCA; ð64Þ

CE ¼
0 Te

y

	 
�1
D�1

l PzTe
y M�1

l;xPy

� Te
x

� ��1D�1
l PzTe

x 0 �M�1
l;yPx

�M�1
l;xPy M�1

l;yPx 0

0BBB@
1CCCA: ð65Þ
The discrete derivative operators Px;y are the respective FIT operator while Pz is the FV operator. The matrices Te
x; Te

y; Th
x and

Th
y transform the FIT variables to the FV variables. They read
Te
x ¼ diagð�ðix; iy; izÞÞ � ½diagðDxðix; iy; izÞÞ��1

; ð66Þ
Te

y ¼ diagð�ðix; iy; izÞÞ � ½diagðDyðix; iy; izÞÞ��1
; ð67Þ

Th
x ¼ diagðlðix; iy; izÞÞ � ½diagðfDxðix; iy; izÞÞ��1

; ð68Þ

Th
y ¼ diagðlðix; iy; izÞÞ � ½diagðfDyðix; iy; izÞÞ��1

: ð69Þ
6. Time integration and longitudinal–transverse split operator method

6.1. Time integration in the central flux case

The system matrices of the FIT as well as the central flux formulation of the FVM (Eqs. (15) and (33)) exhibit a Hamiltonian
structure. For the numerical integration of Hamiltonian systems symplectic integrators are widely used since they strictly
conserve the volume occupied in the phase space spanned by the electric field~E and the magnetic field ~H. For linear systems,
this in turn guarantees for no accumulation of the error in the total energy of the discrete solution [6] in the long term.

The simplest symplectic time integration scheme is the leap-frog scheme. It is commonly applied for the solution of tran-
sient problems with the FIT [4]. The leap-frog scheme makes use of a central difference approximation of the derivative in
time. The fully discrete system of equations reads
unþ1 � un

Dt
¼ Aun

; ð70Þ
with
un ¼ enþ1=2

hn

 !
; ð71Þ
where Dt denotes the time step and n denotes the time step number. The system matrix A corresponds to (15) or (33),
respectively. Arranging (70) in the form
unþ1 ¼ Tun ð72Þ



Fig. 8. Exemplary eigenvalue distribution of the FIT or FVM central flux system ma
stability limit, the leap-frog scheme maps each pair of imaginary eigenvalues of th
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yields the update equation. The FIT iteration matrix T reads
trix (left) and iteration matrix (right) in the comple
e system matrix to the unit circle in the complex p

al Physics 229 (2010) 4075–4096
T ¼
I DtM�1=2

� CTM�1=2
l

�DtM�1=2
l CM�1=2

� I � Dt2M�1=2
� CTM�1

l CM�1=2
�

 !
: ð73Þ
The FV iteration matrix in the centered case is obtained accordingly. The symplectic property of phase space volume conser-
vation can be expressed by the condition
TT 0 I
�I 0

� �
T ¼! 0 I

�I 0

� �
; ð74Þ
which holds true for the iteration matrix T given above.
The iteration matrix T is determined by the system matrix A of the respective spatial discretization method and the time

integration scheme applied. The eigenvalues of the FIT iteration matrix kT relate to those of the system matrix kA according to
kT ¼ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p
with a ¼ 1 þ 1

2
ðDtkAÞ2

: ð75Þ
Within the stability limit for the time step [4], the leap-frog scheme maps the pairs of imaginary eigenvalues of the FIT or
FVM central flux system matrix to the unit circle in the complex plane (Fig. 8).

6.2. Time integration in the upwind case

A symplectic time integration method cannot be applied to a system with complex eigenvalues. This is demonstrated in
the following. In Fig. 9 (left) an exemplary distribution of eigenvalues of the FI–FV system matrix kA is plotted in the complex
plane. If the leap-frog scheme is applied to the time integration, the relation between the eigenvalues of the system matrix
and the iteration matrix is given by (75). The two parts of the relation map the pairs of eigenvalues once to the inside

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

of the unit circle and once to the outside a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 1

p	 

. The resulting eigenvalue distribution of the iteration

matrix is shown in Fig. 9 (right). Obviously eigenvalues with jkTj > 1 appear, which leads to an exponential amplification of
the respective mode. Consequently, the fully discrete method is unstable for any choice of the time step Dt.

Runge–Kutta-type methods (RK) [11] are viable choices for the time integration of the FI–FV scheme. The update equa-
tions for the predictor–corrector method (RK2) and the classical RK4 read
unþ1 ¼ I þ DtA þ ðDtAÞ2

2

 !
un; ð76Þ

unþ1 ¼ I þ DtA þ ðDtAÞ2

2
þ ðDtAÞ3

6
þ ðDtAÞ4

24

 !
un: ð77Þ
In Fig. 10 the eigenvalue distribution of the iteration matrices for both time integration schemes are shown. The relations of
the eigenvalues of the system matrix kA and those of the iteration matrix kT read
x plane. Within the
lane.



Fig. 9. Exemplary eigenvalue distribution of the FI–FV hybrid system matrix (left) and iteration matrix (right) in the complex plane. The iteration matrix
results from the application of the leap-frog scheme.

Fig. 10. Typical eigenvalue distributions of FI–FV iteration matrices resulting from Fig. 9 (left) and the application of the predictor–corrector scheme (left)
and the classical Runge–Kutta-4 method (right).
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kT ¼ 1 þ DtkA þ ðDtkAÞ2

2
þ ðDtkAÞ3

6
þ ðDtkAÞ4

24

" #
: ð78Þ
In contrast to the FIT the absolute value of the eigenvalues kT is in general less than one. Hence, the FVM is dissipative while
the energy of the discrete solution is preserved within the FIT.

6.3. Application of the LT split operator technique for time integration

In Section 5, a directional separation of the continuous curl operator into a two-dimensional transverse and a one-dimen-
sional longitudinal operator was performed. In the following, the system matrix of the FI–FV scheme (61) is represented in
the form
AFI—FV ¼ AFI—FV;T þ AFI—FV;L; ð79Þ
where AFI—FV;T is the FIT discretization of the transverse problem and AFI—FV;L contains the FVM discretization of the longitu-
dinal problem. The exact solution of the semi-discrete equation (60) within one time step Dt is formally given by
unþ1 ¼ e�DtAun ¼ e�DtðATþALÞun; ð80Þ
where the FI–FV subscripts were omitted. The update operator can be separated according to
e�DtA ¼ e�DtðATþALÞ ¼ e�DtAT � e�DtAL þ OðDt2Þ: ð81Þ



Fig. 11. Exemplary eigenvalue distribution of the FI–FV hybrid system matrix A (l

T

(middle) and A

L
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This can be further approximated by
eft) and of the transverse and longitudinal matrices(right)
 e�DtA 	 ð1 � DtATÞð1 � DtALÞ þ OðDt2Þ: ð82Þ
Eq. (82) represents a first order accurate Godunov splitting scheme [13,15]. A second order accurate update scheme results
from the multiplicative Strang splitting procedure [14]
e�DtA ¼ e�Dt=2AT � e�DtAL � e�Dt=2AT þ OðDt3Þ: ð83Þ
The construction of higher order split operator methods is addressed in [6,15].
Substituting (81) and (83) into (80) and introducing the transverse and longitudinal iteration matrices TTðDtÞ and TLðDtÞ

yields
unþ1 ¼ TTðDtÞTLðDtÞun ¼ TGun ð84Þ
for the Godunov splitting and
unþ1 ¼ TTðDt=2ÞTLðDtÞTTðDt=2Þun ¼ TSun ð85Þ
for the Strang splitting, where the error terms were dropped.
In the update Eqs. (84) and (85) the two-dimensional transverse problem is fully separated from the one-dimensional

longitudinal problem. This allows for applying different time integration methods to each of the subproblems. In Fig. 11,
the eigenvalues of A , AT and AL are displayed. Since the transverse problem is discretized using the FIT, the distribution
of eigenvalues of the transverse system matrix AT resembles Fig. 8. The transverse problem can be symplectically integrated
in time using the leap-frog scheme. In contrast to the application of a Runge–Kutta time integrator to the full three-dimen-
sional system, this limits numerical dissipation effects to the longitudinal part. The iteration matrix TT is similar to the iter-
ation matrix T given in (73), except for C being replaced by a transverse curl matrix CT.

For the time integration of the longitudinal problem, the Lax-Wendroff method is applied. The time discrete update equa-
tion reads
uðizÞnþ1 ¼ uðizÞn þ Dt
DzðizÞ

f ðiz þ 1
2

Þnþ1
2 � f iz � 1

2

� �nþ1
2

" #
; ð86Þ
8iz 2 ½1::Nz�. It has to be carried out for all z-directed lines given by the combinations of ðix; iyÞ with ix 2 ½1::Nx� and iy 2 ½1::Ny�
as illustrated in Fig. 7. The Lax-Wendroff method combines an explicit Euler step in time with numerical fluxes evaluated at
the time level n þ 1=2. This requires an additional extrapolation in time for the calculation of the boundary values given by
ðExðizÞnþ1=2Þ^=_ ¼ exðizÞn þ =� Dz
2

@

@z
ex þ Dt

2
@

@t
ex ð87Þ
for Ex and all other quantities likewise. The temporal derivative can be cast into a spatial derivative using the underlying PDE.
This is referred to as the Cauchy-Kowalewski procedure [8]. It yields
ðExðizÞnþ1=2Þ^=_ ¼ exðizÞn þ =� Dz
2

@

@z
ex � Dt

2
1
�
@

@z
hy; ð88Þ
Ain the complex plane.



Fig. 12. Exemplary eigenvalue distribution of the longitudinal system matrix AL (left) and the iteration matrix TL for an application of the explicit Euler
scheme (right).

Fig. 13. Polar plots of the amplification (top), the normalized angular frequency (bottom left), and the frequency error (bottom right) of the FIT for waves
traveling along a coordinate in a two-dimensional domain. The gray dashed unit circle indicates the exact solution. The curves correspond to various time
steps with respect to the maximally stable CFL number m� for two-dimensional problems, which relates to m by m� ¼ m=

ffiffiffi
2

p
. The amplification plot shows the

neutral stability for any choice of the time step within the stable regime.

S. Schnepp et al. / Journal of Computational Physics 229 (2010) 4075–4096 4089
where the temporal derivative of ex was replaced by the spatial derivative of hy according to Ampére ’s law in one dimension.
The spatial derivative is replaced by one of the slope approximation specified in (28)–(30)
ðExðizÞnþ1=2Þ^=_ ¼ exðizÞn þ =� Dz
2

sðexÞ � Dt
2

1
�

sðhyÞ: ð89Þ
The iteration matrix for the longitudinal problem TL is given by
TLðDtÞ ¼ I þ DtAL; ð90Þ
so that the eigenvalues of AL and TL relate according to
kT ¼ 1 þ DtkA: ð91Þ
Exemplary eigenvalue distributions of both matrices are plotted in Fig. 12.



Fig. 14. Polar plot of the normalized angular frequency (left) and the frequency error (right) of the FIT for waves traveling along a coordinate in a one-
dimensional domain. The gray dashed unit circle in the left graph indicates the exact solution. The curves correspond to various time steps with respect to
the maximally stable CFL number m.
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A von Neumann analysis yields the phase and amplification functions
UðxDtÞ ¼ sinðxDtÞ; ð92Þ
AðxDtÞ ¼ expðcosðxDtÞ � 1Þ: ð93Þ
Combining these with the spatial phase and amplification properties of the FVMs given in (44)–(49), the dispersion and dis-
sipation relations of the fully discrete longitudinal operator are obtained.

We introduce the CFL number m [8] as
m :¼ cDt
Du

: ð94Þ
Figs. 13–16 show plots of the amplification and normalized angular frequency as well as plots of the errors of those quan-
tities for the fully discretized formulations of all introduced methods. The FIT dispersion graphs in Figs. 13 and 14 correspond
to the two- and one-dimensional case. The FVM dispersion and dissipation graphs correspond to the one-dimensional case.
For the amplification factor graphs the unit circle corresponds to a neutrally stable, and thus energy conserving, scheme. This
is the case for the fully discretized formulation of the FIT for any stable choice of the time step. On the contrary, all FVM
formulations exhibit a dissipative character. While Godunov’s method shows large amplitude errors, they are small for
the Lax-Wendroff and Fromm methods.

For the graphs of the normalized angular frequency, time step dependent deviations from the unit circle imply a disper-
sive behavior. This is the case for all methods presented. However, dissipation and dispersion errors of the one-dimensional
formulations vanish for m ¼ 1. Therefore, Dt1D

max is often referred to as the magic time step Dt�.
For a stable explicit time stepping, the well-known CFL condition has to be fulfilled. It establishes the time step

limits
Dt1D
max ¼ Du

c
; ð95Þ

Dt2D
max ¼ Duffiffiffi

2
p

c
; ð96Þ
for the involved one- and two-dimensional subproblems, respectively. In Fig. 17 exemplary eigenvalue distributions of TG

and TS for Dt1D
max are shown. It is not possible to apply the Godunov splitting with this step since it exceeds the time step limit

of the two-dimensional FIT subproblem (96). For the Strang scheme, the transverse update is decomposed into two steps,
each of them proceeding Dt1D

max=2 in time. Since it holds true
Dt1D
max

2
¼ Du

2c
<

Duffiffiffi
2

p
c

¼ Dt2D
max; ð97Þ
the update is expected to be stable. Fig. 17 confirms this statement. Hence, only the Strang split operator method is appli-
cable (cf. Fig. 17) with the magic time step.

The LT-FIT and the FI–FV scheme yield identical results if the magic time step is applied. However, in non-equidistant or
locally refined grids the maximum stable time step Dt1D

max and the magic time step Dt� coincide only for the smallest cells. In
all other cells dispersion effects occur and deteriorate the solution quality.





Fig. 16. Plots of the amplitude error (left) and normalized angular frequency error (right) of the Godunov, Lax-Wendroff and Fromm schemes. The plot

ranges are chosen identically for all methods. While Godunov’s method exposes large amplitude errors, they are small for the Lax-Wendroff and Frommmethods. Godunov’s as well as Fromm’s method show no phase error for the CFL numbers  -0 and 6 5 (again curves for

¼0

:

49 instead of

m

:

5 are

shown in the graph). Overall, Fromm’s method performs best.
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method. The pattern does not show the fourfold symmetry anymore. Nevertheless, dispersion effects emerge along both
axes. For the result shown in the lower right graph the FI–FV scheme was applied, also employing a time step of
0:75Dt1D

max. Also in this case, dispersion effects occur along both axes, however, they are much less pronounced along the
z-axis. In both cases the z-direction was treated as the long direction for the one-dimensional problem. Thus, the FI–FV
scheme offers advantages for many real-world problems, where equidistant grids are not applicable. Furthermore, the FI–
FV scheme uses about one third less CPU time than the LT-FIT.

Our motivation for developing a scheme with improved dispersion properties along one coordinate was its integration
into an existing code, which utilizes time-adaptive mesh refinement. We reported on this development, e.g. in [16,17]. This
code has been applied for the simulation of charged particle dynamics in linear particle accelerators. The application of adap-
tive mesh refinement naturally eliminates the possibility of applying the magic time step in all cells.

In the second example, the FI–FV scheme is applied to the simulation of a bunch of electrons in a rectangular pipe. The
electrons travel at the speed of light. Due to the relativistic contraction, the spectrum of the excited electromagnetic fields
m
¼0



Fig. 17. Exemplary eigenvalue distribution of the FI–FV iteration matrix in the complex plane. In the left hand side graph the Godunov splitting scheme was
applied, while in the right hand side graph the Strang scheme was used.

Fig. 18. Cylindrical wave simulated with the FIT, LT-FIT, and FI–FV scheme. The cylindrical wave is excited by a y-directed line current located at x ¼ 0 and
z ¼ 0 with a Gaussian time profile. The plot shows the Ey component in a cut view. A very low temporal resolution of the exciting current was chosen.
Hence, strong dispersion effects emerge. The upper left result was obtained using the FIT and the upper right result with the LT-FIT. In both cases the
respective maximum time step was applied. For the magic time step the LT-FIT and the FI–FV scheme yield identical results. Dispersion effects are limited to
the propagation along the x-axis, resulting in a clearly non-symmetrical pattern. The results in the lower graphs were obtained with the LT-FIT (bottom left)
and FI–FV scheme (bottom right) using a reduced time step Dt ¼ 0:75Dt1D

max

� �
. The application of the LT splitting procedure with the FIT offers no benefit if a

time step different from the magic one is chosen ðm < 1Þ. In the case of the FI–FV scheme, dispersion effects also occur along both axes, however, they are
much less pronounced along the z-axis.
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Fig. 19. In (a) to (c) cut views of the total electric field in a rectangular pipe excited by a bunch of electrons (indicated as a black dot) are shown. The
electrons travel at the speed of light in z-direction. The result shown in (a) was obtained using the LT-FIT method on a fixed grid and is considered the
reference. For (b) and (c) the LT-FIT and FI–FV hybrid scheme were applied on adaptively refined grids. In (d) the adaptively refined grid for the respective
instant in time is shown. For this illustration, every second grid line in both directions was omitted. A comparison of (b) and (c) reveals the improved
dispersion behavior of the FI–FV scheme with respect to the LT-FIT. The small dispersion errors visible in (a) stem from the dispersion afflicted two-
dimensional FIT problem. In (c) also the dissipating character of the FI–FV scheme in the non-refined area is visible.
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contains very high frequencies. In Fig. 19 the electric field solutions obtained with LT-FIT on a fixed grid (a), LT-FIT on a time-
adaptive grid (b) and the FI–FV scheme on a time-adaptive grid (c) are shown in a cut view. In addition, (d) shows one layer
of the adapted grid as employed utilized in (b) and (c) at the respective instant in time. In this illustration every second grid
line had to be omitted in order to obtain a visible separation of the lines. The grid was adapted along the z-axis only. The
fixed grid used in (a) consists of 45 
 45 
 450 ¼ 911250 nodes. For the time-adaptive grids used in (b) and (c) the ratio
of the grid step size in z-direction within the maximally refined region and the non-refined grid is 1/4. The grid resolution
in the bunch region is identical for all cases (a)-(c) and corresponds to approximately 10 cells along the length of particle
bunch.

The improved overall dispersion properties of the FI–FV scheme with respect to the LT-FIT are reflected in the results
shown in Fig. 19(b) and (c). While the LT-FIT solution is polluted with dispersion errors, non-physical high-frequency oscil-
lations are barely visible in the FI–FV solution. The graphs in Fig. 20 confirm this statement. There, the total electric field



Fig. 20. Plots of the absolute of the electric field along the z-axis of Fig. 19(a)–(c). The bottom graph shows an enlargement of the boxed area in the top
graph. The FI–FV result exhibits barely any non-physical oscillatory behavior, which emerges for the other methods due to dispersion errors.
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along the z-axis is plotted. The bottom graph shows an enlarged view of the framed area of the top graph. High-frequency
oscillations are absent in the FI–FV result.

For simulations involving grid adaptation, the dispersive and dissipative behavior of the discrete solution changes accord-
ing to the local resolution. The value of b depends locally on the grid step size and corresponds to a certain dispersion and
dissipation error according to Figs. 13–16. In order to perform an adaptation of the grid, grid voltages have to split and
merged. Due to their definition as integral state variables, this can be done without any error. The grid adaptation does,
therefore not additionally affect the propagation behavior.

8. Conclusions

We introduced a hybrid Finite Integration–Finite Volume (FI–FV) Scheme with improved dispersion properties along one
coordinate. It is well-suited to the simulation of problems exhibiting a preferred direction, e.g. problems comprising large
aspect ratios along the different coordinate axes. The scheme is based on a splitting of the discrete curl operator into a
two-dimensional and a one-dimensional operator. The FIT is applied to the former, the FVM to the latter. This yields a hybrid
scheme combining the computational efficiency of the FIT with the superior dispersion properties of the FVM. We presented
a short review of the FIT and the FVM and summarized their semi-discrete dispersion and dissipation properties. For the
FVM, the central, Godunov, Lax-Wendroff, and Fromm flux were considered. We established asymptotic orders of the disper-
sion and dissipation errors of all considered methods. Subsequently, suitable time integration methods for the semi-discrete
equations were presented. We highlighted the relation of the distribution of eigenvalues of the system matrix and the iter-
ation matrix. In this context, we showed that the combination of the upwind flux formulation of the FVM and the leap-frog
scheme is always unstable regardless of the chosen time step. Additionally, we showed that the Godunov splitting cannot be
applied with the magic time step due to a violation of the stability condition. We, thus, applied the Strang split method. We
elaborated on the coupling of the FIT and FVM degrees of freedom and presented a matrix representation of the three-dimen-
sional scheme. The novel scheme was applied to two examples, which confirmed its superior dispersion properties along the
preferred direction.
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